

Method Procedure

Document Number: SASoM/METHOD/080.v5

Title: PCR for GeCKOv2 library preparation for next-generation

sequencing

Version: v5

Author: Paul Reynolds

Effective from:	05/08/2021	
Valid to:	05/08/2023	

SOP History		
Number	Date	Reason for Change
v1	02/04/2015	Original
v2	05/08/2015	Minor Amendments
v3	05/08/2017	Update
V4	05/08/2019	Update
V5	05/08/2021	Update

1.0 Purpose -

This SOP describes the current procedure for performing PCR reactions on the GeCKOv2 library for Next generation sequencing in Laboratory 248 at the St Andrews School of Medicine (SASoM).

2.0 Scope -

This SOP applies to the staff in the SASoM involved in genome-wide loss of function screening using GeCKOv2 library.

3.0 Responsibilities -

All staff are responsible for ensuring that the methods are followed in accordance with this SOP.

All staff must have read and signed the relevant risk assessment documents before performing this procedure.

Method Procedure

4.0 Procedure -

This procedure is a <u>2-Step PCR</u> protocol using Herculase II Fusion DNA Polymerase.

For the first PCR, the amount of input genomic DNA (gDNA) for each sample was calculated in order to achieve 300X coverage over the GeCKO library (assuming 6.6µg of gDNA for 10⁶ cells). For each sample, perform PCR reactions (100µl) containing 10µg genomic DNA in each reaction.

DNA input needed= 260µg for each sample

For each sample,

PCR 1

26 reactions of **100\muI** (= 2.6 μ I) containing **10\mug DNA** each are needed per biological sample. Determine the required volume of (i) DNA template to get 300 μ g (30 reactions x 10 μ g) and (ii) dH₂O.

Prepare a Master mix for 30 reactions without DNA template and Herculase for each sample. Add the components (in the prescribed order – see table below) in a ~5ml tube while mixing gently.

Quantity for 1 reaction (100µl)

Quantity for 30 reactions	(total 3ml)
---------------------------	-------------

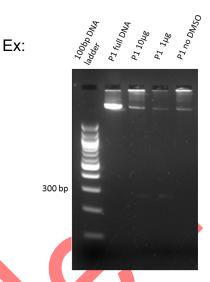

Components	Targets < 1 kb
dH2O	Xμl to final vol
5X Herculase	
buffer	20μΙ
dNTPs Mix (25 mM each)	1μΙ
DNA template	ΧμΙ (10μg)
Primer 1	2. 5μl
Primer 2	2 .5μl
Hercu <mark>la</mark> se DNA Poly <mark>me</mark> rase	1μΙ
DMSO	3μΙ
Total reaction volume	100μΙ

30 reactions			
ΧμΙ	to	final	
volun	ne		
600µl			
30μΙ			
ΧμΙ (3	00μg)		
75µl			
75µl			
30µl			
90μl			
3ml			

Put 100 μ I – (DNA template volume and Herculase volume) of master mix in 27 sterile 0.2 ml thin walled PCR tubes per sample.

Add DNA template in 26 of the PCR tubes and an equal volume of dH₂O (= control) in 1 tube.

Add 1 µl Herculase in each tube.



PCR conditions on G-Storm thermal cycler (Lab 249)

PCR Conditions			
Initial			
denaturation	95°C	2 min	1 cycle
Denaturation	95°C	15 s	
Annealing	52°C	20s	24 cycles
Elongation	72°C	30s	
Final extension	72°C	3 min	1 cycle
	END		

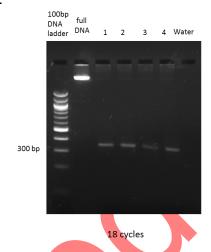
24 cycles

Run 10 µI PCR products from each reaction in a 2% agarose gel to check size and purity. A light band of about 290bp should be detected as shown on the gel above. Combine amplicons from each reaction to have a volume of 2.6ml PCR1 product for each sample. Perform AMPure XP bead purification (SaSoM Method –XXX-) if purity is not good enough or optimise PCR conditions.

PCR 2

Take **5µI** product from PCR#1 of each sample in 14 PCR tubes and add to the components described in the table below, to get 100 µI reactions. Use the **appropriate primers** (see primer sequences and combinations for PCR2 below). Run PCR protocol.

Components	Targets < 1 kb
dH2O	65µl
5X Herculase	
buffer	20μΙ
dNTPs Mix (25 mM each)	1μΙ
DNA template	5μl
Primer 1	2.5µl
Primer 2	2.5µl
Herculase DNA Polymerase	1μΙ
DMSO	3μΙ
Total reaction volume	100μΙ



Ex:

PCR conditions on G-Storm thermal cycler (Lab 249)

PCR Conditions			
. en conamicons			
Initial			
denaturation	95°C	2 min	1 cycle
Denaturation	95°C	15 s	
Annealing	50°C	20s	18 cycles
Elongation	72°C	30s	
Final extension	72°C	3 min	1 cycle
	END		

Check size of PCR products by running 10 µl per lane in a 2% agarose gel. A band of about 350 bp, and similar intensity as on the gel above should be detected.

Purify PCR product from each sample using AMPure XP purification kit (SaSoM Method –XXX)

Proceed to quality control using (i) QubiT (SaSoM Method –079) followed by (ii) Bioanalyzer with High sensitivity DNA kit (SaSoM Method –XXX).

v2Adaptor primers for primary PCR of sgRNA sequences

Primers PCR1	Primer Sequences	Purification	Synthesis scale (µM)
v2Adaptor_ F(Forward)	5'- AATGGACTATCATATGCTTACCGTAACT TGAAAGTATTTCG -3'	HPLC (High performance Liquid chromatography)	0.05
v2Adaptor_ R (Reverse)	5'- TCTACTATTCTTTCCCCTGCACTGTTGT GGGCGATGTGCGCTCTG -3'	HPLC	0.05

Method Procedure

Illumina primers for secondary PCR of sgRNA sequences

Primers PCR2	Primer Sequences	Purification	Synthesi s scale (µM)
Illumina F1	5'- AATGATACGGCGACCACCGAGATCTACACTCTTTCCC TACACGACG CTCTTCCGATCTTAAGTAGAGTCTTGTGGAAAGGACG AAACACCG-3'	HPLC	0.05
Illumina F2	5'- AATGATACGGCGACCACCGAGATCTACACTCTTTCCC TACACGACG CTCTTCCGATCTATACACGATCTCTTGTGGAAAGGA CGAAACACCG-3'	HPLC	0.05
Illumina F3	5'- AATGATACGGCGACCACCGAGATCTACACTCTTTCCC TACACGACG CTCTTCCGATCTGATCGCGCGGTTCTTGTGGAAAGGA CGAAACACCG-3	HPLC	0.05
Illumina F4	5'- AATGATACGGCGACCACCGAGATCTACACTCTTTCCC TACACGACG CTCTTCCGATCTCGATCATGATCGTCTTGTGGAAAGG ACGAAACACCG-3'	HPLC	0.05
Illumina R1	5'- CAAGCAGAAGACGGCATACGAGATAAGTAGAGGTGA CTGGAGTTCA GACGTGTGCTCTTCCGATCTTTCTACTATTCTTTCCCC TGCACTGT-3'	HPLC	0.05
Illumina R2	5'- CAAGCAGAAGACGGCATACGAGATACACGATCGTGA CTGGAGTTCA GACGTGTGCTCTTCCGATCTATTCTACTATTCTTTCC CCTGCACTGT-3'	HPLC	0.05
Illumina R3	5'- CAAGCAGAAGACGGCATACGAGATCGCGCGGTGTGA CTGGAGTTCA GACGTGTGCTCTTCCGATCTGATTCTACTATTCTTTC CCCTGCACTGT- 3	HPLC	0.05
Illumina R4	5'- CAAGCAGAAGACGGCATACGAGATCATGATCGGTGA CTGGAGTTCA GACGTGTGCTCTTCCGATCTCGATTCTACTATTCTTT CCCCTGCACTGT-3'	HPLC	0.05

St Andrews School of Medicine (SASoM) Systems Pathology Group Method Procedure

Combination of Illumina primers for secondary PCR of sgRNA sequences

	Sample	Forward primer	Reverse primer
1	Replicate 1: Baseline	Illumina F1	Illumina R1
2	Replicate 1: Day 14 Control	Illumina F1	Illumina R2
3	Replicate 1: Day 14 Gemcitabine	Illumina F1	Illumina R3
4	Replicate 1: Day 14 Acelarin S	Illumina F1	Illumina R4
5	Replicate 1: Day 21 Control	Illumina F2	Illumina R1
6	Replicate 1: Day 21 Gemcitabine	Illumina F2	Illumina R2
7	Replicate 1: Day 21 Acelarin S	Illumina F2	Illumina R3
8	Replicate 2: Baseline	Illumina F2	Illumina R4
9	Replicate 2: Day 14 Control	Illumina F3	Illumina R1
10	Replicate 2: Day 14 Gemcitabine	Illumina F3	Illumina R2
11	Replicate 2: Day 14 Acelarin S	Illumina F3	Illumina R3
12	Replicate 2: Day 21 Control	Illumina F3	Illumina R4
13	Replicate 2: Day 14 Gemcitabine	Illumina F4	Illumina R1
14	Replicate 2: Day 14 Acelarin S	Illumina F4	Illumina R2

5.0 Personal protection -

A Howie laboratory coat and lab gloves must be worn at all times.

6.0 Spillages -

Always clean up any spills immediately after use, only you know what you have spilt and are aware of its hazard.

7.0 Training -

Method Procedure

8.0 Related documents -

8.1 Risk assessments:

RA/BIOL/001 - Handling of bacteria

RA/BIOL/004 - Tissue culture

RA/GM/002 - Viral-mediated gene delivery into mammalian cells

8.2 SOPs:

SASoM/METHOD/075 - GeCKO lentiCRISPRv2 library DNA amplification in Lucigen bacteria.

SASoM/METHOD/077 - GeCKO genomic DNA purification Qiagen Midi kit.

SASoM/METHOD/078 - Transduction of GECKO Library in MiaPaCa2 cells.

SASoM/METHOD/079-DNA quantification using QubiT fluorometer 2.0 for GeCKO library.

SASoM/METHOD/080- PCR for GeCKOv2 library preparation for Next generation sequencing.

SASoM/METHOD/081-sgRNA Target Guide Sequence Cloning into pLentiCRISPRv2.

SASoM/METHOD/082-AMPure PCR purification for GeCKOv2 NGS.

SASoM/METHOD/083-Quality control of GeCKOv2 for NGS using Agilent Bioanalyzer system.

Method Procedure

9.0 Approval and sign off -

Author:

Name: Paul Reynolds

Position: Principal Investigator

P. Ryulls.

Signature:

Date: 07/10/2021

Management Approval:

Name: Peter Mullen

Position: Research Fellow

Signature: Peter Muller Date: 28/09/2021

QA release by:

Name: Alex MacLellan

Position: QA Manager

Signature:

✓ Date: 28/09/2021

STANDARD OPERATING PROCEDURE

Please sign below to indicate you have read this S.O.P and understand the procedures involved.

NAME	POSITION HELD	SIGNATURE	DATE